 
 
|  |  | 
| Category: algorithms | Component type: function | 
template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,
          class BinaryFunction1, class BinaryFunction2>
T inner_product(InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, T init, BinaryFunction1 binary_op1,
                BinaryFunction2 binary_op2);
                   
The first version of inner_product returns init plus the inner product of the two ranges [1]. That is, it first initializes the result to init and then, for each iterator i in [first1, last1), in order from the beginning to the end of the range, updates the result by result = result + (*i) * *(first2 + (i - first1)).
The second version of inner_product is identical to the first, except that it uses two user-supplied function objects instead of operator+ and operator*. That is, it first initializes the result to init and then, for each iterator i in [first1, last1), in order from the beginning to the end of the range, updates the result by result = binary_op1(result, binary_op2(*i, *(first2 + (i - first1))). [2]
int main()
{
  int A1[] = {1, 2, 3};
  int A2[] = {4, 1, -2};
  const int N1 = sizeof(A1) / sizeof(int);
  cout << "The inner product of A1 and A2 is " 
       << inner_product(A1, A1 + N1, A2, 0)
       << endl;
}
[1] There are several reasons why it is important that inner_product starts with the value init. One of the most basic is that this allows inner_product to have a well-defined result even if [first1, last1) is an empty range: if it is empty, the return value is init. The ordinary inner product corresponds to setting init to 0.
[2] Neither binary operation is required to be either associative or commutative: the order of all operations is specified.
![[Silicon Surf]](surf.gif) 
![[STL Home]](stl_home.gif)